Indoor 10 Meter Beam

A 2-element coaxial antenna.

by Jacquelyn J. McGlothlin N9CAP

I n May 1981, I wrote "The 'No Antennas' Antenna," which appeared under my former name and call, Jacquelyn Schoewe WA9BBX. It was intended to shed some light on the problems many of us face when the landlord says, "No indoor antennas!" What do you do, give up your hobby? No way! You resort to an indoor, "invisible" antenna. What is not seen will not be noticed. From the mail I received, it appears that many of you tried the indoor coaxial dipole with great success. For those of you who wish to go one step further, here's an indoor, invisible coaxial beam that will improve your signal both ways. It requires only another length of coax to turn the original dipole into a beam.

The coaxial beam antenna has the same features as the coaxial dipole. It greatly attenuates harmonics, thus lessening any TVI problems. This antenna is also very broadbanded, covering the entire 10 meter band with a VSWR under 2:1 at band edges. The broad-band characteristics are due to the feedline being matched to the antenna and electrically incorporating its own balun. The coaxial beam antenna has a definite gain over a coaxial dipole, with 5–6 dBd being typical. It is also a very "quiet" antenna; the vinyl jacket reduces static charge build-up that can cause a popping noise in the receiver when discharged.

First, the Dipole

I'll begin with step-by-step construction of the 10 meter dipole, then modify it into a 2-element, 10 meter beam antenna. For antenna dimensions, see Figure 1.

Construction of the antenna is simple. RG-58A/U coax is best because it's light and flexible, but you can also use RG-8/U or RG-8X. Maximum legal power can be used with any choice of coax, providing the VSWR is under 1.5:1.

Begin construction by removing 1" (2.5cm) of vinyl jacket (1/2" on each side of center) at the center of the antenna. Cut the shield in the center all the way around the coax. Take care not to cut the dielectric or the center conductor. Next, form two leads with the shield, as shown in Figure 2. This is the feedpoint of the antenna.

From this center feedpoint, measure out each side of center 4'2" (1.3 meters) and cut

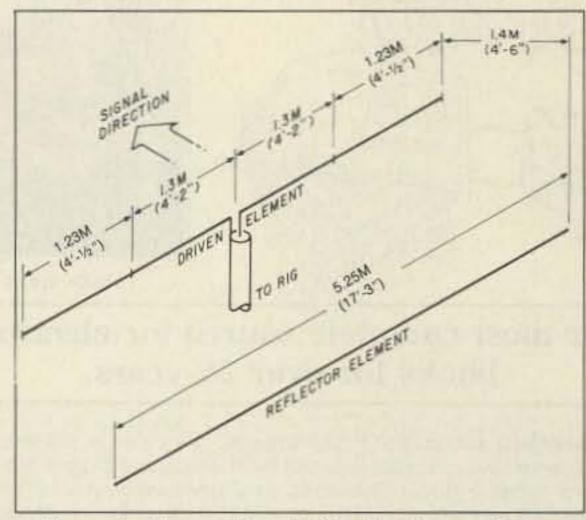


Figure 1. Element lengths for the 10 meter beam.

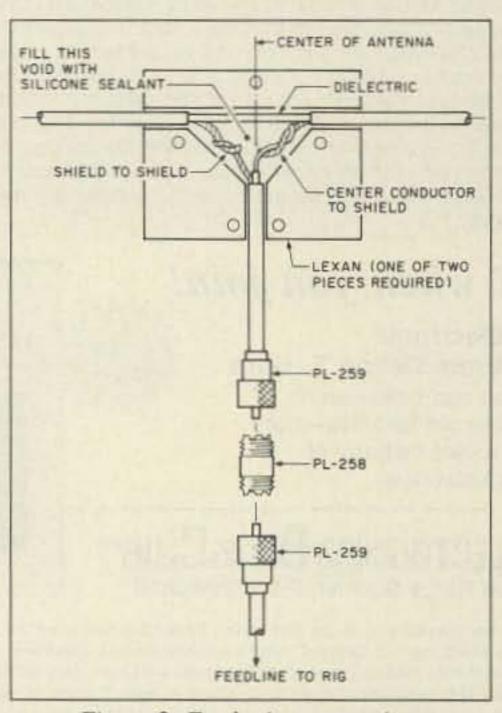


Figure 2. Feedpoint connection.

the coax at that point. Remove approximately 1" (2.5cm) of vinyl jacket from each of the ends, and fold back the shield so that the dielectric is exposed. Cut and remove about an inch of this dielectric, being careful not to cut the center conductor. Then, twist the shield and center conductor together and solder. Do this at both ends. It forms the 52 ohm matching section and balun.

Next, cut two lengths of coax, each 4' 1/2" (1.23 meters) long. Then remove an inch of

vinyl jacket from all four ends, fold back the shield, remove the dielectric, and twist the shield and center conductor together as before. This forms the end sections of the antenna. Attach one of these end sections to one end of the matching section by twisting together the prepared ends and soldering. In the same fashion, solder the remaining end section to the other end of the matching section. If you plan to install this antenna in an attic or outdoors, waterproof these joints as best you can. This will prevent any moisture from seeping in and deteriorating the coax. An easy method is to use heatshrink tubing over the joint, heating it until it shrinks snugly, then wrapping it tightly with black vinyl electrical tape. Waterproofing the ends will come

later, as they may need trimming for tuning

Attaching the Feedline

purposes.

Refer to Figure 2. A short length of coax approximately 12" (30cm) long will do, providing it is of the same type used for construction of the antenna. Remove about 1" (2.5cm) of vinyl jacket from one end, fold back the shield, and remove the dielectric, being careful once again not to cut the center conductor. Form two leads with the shield and center conductor. At the feedpoint of the antenna, connect this feedline by soldering the feedline center conductor to one of the feedpoint leads. Then solder the feedline shield to the remaining lead. Waterproof this area if desired, being sure that the feedpoint leads do not touch each other and short out. One method is to cut two pieces of 1/4" (6.5mm) thick Lexan or similar material into a 3" x 4" (7.5cm x 10cm) shape.

Using a router or hand chisel, remove enough of the material inside each half so that it will make for a snug fit over the feedpoint. Fill this area with silicone sealant such as RTV prior to sandwiching the halves together. Drill holes through both pieces at a few locations to allow for several screws, nuts, and lockwashers to hold the unit tightly together. Drill a hole at roughly the center top portion of this insulator block so that a small nylon rope may be passed through it for supporting the center of the antenna later. At the opposite end of the feedline, attach a PL-259 connector and a PL-258, also called a barrel connector. Then prepare a random length of

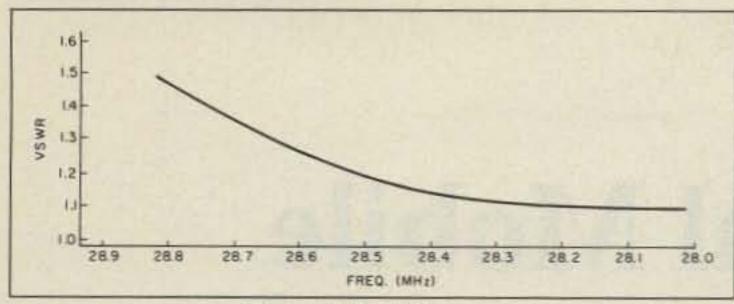


Figure 3. VSWR curve.

coax long enough to reach from the antenna to your rig and attach PL-259s to both ends. This will allow you to easily switch from one antenna to another, if desired, merely by unscrewing the feedline and attaching it to another antenna of your choice.

Erecting the Antenna

In choosing a location, be sure to allow enough room for an additional element running parallel to and approximately 4'6" (1.4 meters) away from the antenna. It should also be oriented in your favorite direction, as indicated by the arrow in Figure 1. An attic or crawl space will provide ample room in most cases. Try to erect as much of it as possible in a straight line, keeping it as far away from large metal objects as feasible. The ends may hang down as long as they don't touch any nearby metal objects. Monofilament fishing line tied in a series of half-hitches along the vinyl jacket ends of antenna will do nicely for anchoring it. The line will bite into the vinyl as it is pulled taunt.

If you don't have an attic or access to one, the antenna may be stapled to a ceiling with plastic cable ties or any other non-conducting material as support. Wrap the cable ties around the antenna at intervals and staple the free ends of the ties to the ceiling. Do not staple directly through the antenna itself. Again, the ends may hang down if need be, providing they don't touch any nearby metal objects.

Tuning the Antenna

After erecting the antenna, check VSWR and trim the ends if needed, keeping track of the total amount trimmed. I used a design frequency of 28.5 MHz for tuning purposes. Be sure to twist the ends of the antenna as before (shield to center conductor), then recheck VSWR. The antenna will interact with any hidden wiring in the walls or ceiling, so a considerable amount may have to be trimmed from each end. Try to achieve a preliminary VSWR of 1.5:1 or 1.6:1 at the design frequency of your choice. This completes construction of the coaxial dipole at this point, so now we'll call it the driven element, and continue its transformation into a 2-element beam antenna.

The 2-element Transformation

The reflector element which we'll add requires only another length of coax, the same type used for construction of the driven element. To determine the length of the reflector, note the total amount, if any, trimmed from the driven element (you did keep track, didn't you?). Subtract this from the total starting length of 17'3"

(5.25 meters) to derive the actual length. This is the length required for the reflector element.

Cut a new length of coax to that dimension and prepare each end as you did with the driven element, then twist together as before (shield to center conductor). Erect this element

in the same manner, being sure to align it parallel to the driven element and centered as best as you can so that an equal amount from each end extends beyond the ends of driven element. It should be placed 1.4 meters 4'6" (1.4 meters) behind driven element for 0.13-wavelength spacing, or 9 feet (2.8 meters) for 1/4-wavelength spacing if you have the room for it. A slightly better front-to-back ratio will result. I had to use 0.13-wavelength spacing because of limited ceiling space, but it still provides overall good performance.

Now, check the VSWR again. You may find that it has risen from the last check, so trim the ends of the reflector element as needed, making sure you trim the same amount from driven element ends at the same time. Final VSWR checks run on the antenna at my QTH gave the results shown in Figure 3. Once you have gotten the VSWR down to an acceptable level, solder all four ends of the antenna and waterproof them if desired. This completes construction.

On-the-Air Results

Comparing the beam antenna to a coaxial dipole, there was a definite increase of 2 S-units, indicating a moderate gain of 5-6 dBd. Front-to-back ratio is not very much, so contacts off the back should be of sufficient signal strength for solid copy both ways. Should you desire to change direction of the antenna 180 degrees, you can convert the reflector element to a director element simply by trimming the ends so that it is 5% shorter in length than the driven element.

This is especially handy on 10 meters when winter European DX fades and summer South American DX predominates. If you like to experiment, a third director element 5% shorter than the driven element can be added for additional gain and front-to-back ratio. Or perhaps a 15 meter beam would appeal to you. Experiment! The possibilities are varied and intriguing!

With this antenna in use at my apartment QTH for over a year, I've been able to work many areas of the world with solid copy both ways that previously weren't strong enough to copy on the dipole for a QSO. Stations have expressed amazement or total disbelief about my antenna, but also provided some very interesting QSOs! Once you start enjoying the pleasures of DXing from your apartment or condo with an indoor beam antenna, I'm sure you'll raise many eyebrows, too! Happy DXing.

You may write Jacquelyn J. McGlothlin N9CAP, 2761A So. Logan Ave., Milwaukee WI 53207. Please enclose an SASE.

RF POWER TRANSISTORS

We stock a full line of Motorola, Toshiba & Mitsubishi parts for amateur, marine, and business radio servicing

Partial Listing of Popular Transistors in Stock

BFR96	\$ 2.75	MRF1946	\$15.00	2SC2509MP \$24.60
CD2664A	24.00	PT6619	19.75	2SC2539 19.75
Set 4 Matched	110.00	PT9847	21.00	2SC2559 35.25
ECG340	3.40	RF120	21.90	2SC2630 24.25
MRF134	16.00	SD1229	12.00	2SC2640 17.00
MRF136	21.00	SD1272	12.00	2SC2641 17.70
MRF137	24.00	SD1278-1	15.75	2SC2642 28.25
MRF138	35.00	SD1407	29.90	2SC2694 46.75
MRF150	68.75	SD1428	34.00	2SC2695 31.75
MRF171	34.50	SD1429-3	37.70	2SC2782 37.75
MRF172	60.00	SRF2072	13.75	2SC2783 59.85
MRF174	80.00	SRF3662	28.50	2SC2879 21.90
MRF207	4.75	SRF3775	14.75	2SC2879 MP 49.50
MRF208	18.95	SRF3800	18.50	2SC2904 32.50
MRF212	20.40	2N1522	11.95	2SC2905 34.50
MRF224	17.75	2N3553	3.00	2SC3101 12.25
MRF237	3.70	2N3771	2.95	40582 10.95
MRF238	16.00	2N3866	1.25	LOW NOISE FIGURE
MRF239	17.00	2N4048	11.95	MGF1302 7.95
MRF240,/A	17.75	2N4427	1.25	MGF1402 17.95
MRF245	32.00	2N5109	1.75	MRF901 1.50
MRF247	24.75	2N5179	1.25	MRF911 & 966 3.50
MRF248	35.00	2N5589	19.95	NE25137/3SK174
MRF261	14.50	2N5591	14.50	NE41137/3SK124 3.50
MRF262	13.00	2N5641	17.90	U309 & U310 1.75
MRF264	14.00	2N5642	18.90	2N4416 & J310 1.50
MRF309	79.75	2N5643	20.90	OUTPUT MODULES
MRF314	29.00	2N5944	12.00	(Partial listing only - call
MRF317	68.50	2N5945	12.00	for numbers not listed)
MRF327	64.25	2N5946	15.00	SAU4 440 LIN 49.50
MRF412	22.00	2N6080	9.90	SAV6 158 43.50
MRF421	24.00	2N6081	12.25	SAV7 144 45.50
MRF422	36.00	2N6082_3,4	14.75	SAV12 144 HT 27.50 SAV15 222 59.75
MRF422MP	81.50	2N6097	20.00	SAV15 222 59.75 SAV17:44 50W 68.50
MRF433	12.75	2SB754 2SC730	4.50	M47704L M H 49.90
MRF450 MRF453	13.50	2SC1307	4.75	M57710A 38.70
MRF454	15.50	2SC1729	18.25	M57719N 49.95
MRF454A	17.00	2SC1945	5.75	M57726 144 67.75
MRF455	11.25	2SC1946, A	- CE30-7 / III	M47727 144 69.50
MRF455A	12.75	2SC1947	9.75	M57729 440 69.95
MRF458	20.00	2SC1955	9.00	M57729H 72.95
MRF475	6.75	2SC1957	1.25	M57732L 35.70
MRF476	4.00	2SC1969	2.90	M57737 144 57.75
MRF477	12.50	2SC1971	4.80	M57739C CEL 53.25
MRF479	15.00	2SC2028	1.95	M57741L/M/H 59.00
MRF485MP	23.75	2SC2029	3.50	M57745 LIN 89.95
MRF492	16.75	2SC2075	1.75	M57759 17.50
MRF497	18.75	2SC2094	21.80	M57762 1296 76.60
MRF515	3.00	2SC2097	28.00	M57764 sos 74.00
MRF555	3.50	2SC209711P	62.00	M57788M 104.85
MRF557	5.50	2SC2099	29.50	M57796H MA 35.70
MRF559	2.25	2SC2166C	1.90	M57797 MA 35.70
MRF607	2.50	2SC2221	8.25	M67705L/M 42.90
MRF629	4.50	2SC2237	8.40	M67727 144LIN 109.95
MRF630	3.75	2SC2284A	24.75	M67728 440 LM 119.95
MRF641	20.50	2SC2289	15.15	M67742 109.85
MRF644	23.00	2SC2290	14.75	MHW591 42.00
MRF646	26.00	2SC2290MP		MHW592 44.75
MRF648	31.00	2SC2312C	5.40	MHW710-1,2,3 63.00
MRF660	14.00	2SC2379	31.25	MHW820-1 83.00
MRF846	44.00	2SC2509	10.85	MHW820-2 92.00
The second second				

TRANSMITTING TUBE SPECIALS

GE / PE	ENTA	ECG	PENTA L	ABS	EIMAC	
6CA7	PL !	\$14.95	572B *	\$59.95	8874	\$324.75
5CL5		13.75	811A *	12.95	8875	409.95
6GK6	ECG	13.95	813	36.80	8930 MIL	288.00
6HF5	*GE	17.95	833A	79.95	3CX800A7	329.95
6JS6C	'GE	18.95	833C	89.95	3CX1200A7	424.50
6KD6	*ECG	19.95	5894	42.95	3CX1200D7	444.50
6LF6		19.95	6146B *	12.95	3CX1500A7	624.50
6LQ6	'GE	19.95	3-500Z	99.95	3CX3000A7	694.50
6MJ6 Bk	Cap Pr	59.95	4CX250B	74.75	4CX250B	98.80
12BY7A	NAT	11.75	4CX350A	149.50	4CX350A	199.50
6550A	·PL	16.95	4CX1000A7	369.95	4X500A	399.95
8950	'GE	20.75	4CX1500B	465.50	3-500Z	142.95
M2057	*GE	24.95	4CX5000A	730.00	4-400C	159.95

MATCHED & SELECTED TUBE & TRANSISTOR FINALS IN STOCK
Tube Socket/Caps avail. Eimac/Penta 1 yr. lim. wty.
Prices/availability subject to change without notice.

Foreign Small Packet Air/10 oz. postal \$5.50

UPS Ship/Hand. 1 lb. Cont. U.S. VISA/MC or prepaid \$3.50

C.O.D. ORDERS add \$3.75 QUANTITY PRICING AVAILABLE

NEXT DAY UPS DELIVERY AVAILABLE MINIMUM ORDER \$20

ORDERS RECEIVED BY 1:30 PST ARE SHIPPED UPS SAME DAY

*EXPORT *O.E.M. *SERVICE *R&D *AMATEUR

ORDERS ONLY > (800) 854-1927 < NO TECHNICAL

: MAIN ORDER LINE : INFORMATION (619) 744-0700

